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Mind wandering is an ubiquitous phenomenon in everyday life. In the cognitive neurosciences, mind wandering has been associated with
several distinct neural processes, most notably increased activity in the default mode network (DMN), suppressed activity within the
anti-correlated (task-positive) network (ACN), and changes in neuromodulation. By using an integrative multimodal approach combin-
ing machine-learning techniques with modeling of latent cognitive processes, we show that mind wandering in humans is characterized
by inefficiencies in executive control (task-monitoring) processes. This failure is predicted by a single-trial signature of (co)activations in
the DMN, ACN, and neuromodulation, and accompanied by a decreased rate of evidence accumulation and response thresholds in the
cognitive model.
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Introduction
Mind wandering, or shifts in attention from outward, stimulus-
based processing to inward, introspective cognition, is ubiqui-
tous: recent research estimates the frequency of mind wandering
in everyday life to be �50%, independent of current activity
(Killingsworth and Gilbert, 2010). Understanding the cognitive
mechanisms involved in mind wandering is critical for under-
standing and avoiding the potentially disastrous impacts off-task
cognition can have, e.g., on performance in driving (He et al.,
2011; Yanko and Spalek, 2014) and aviation (Wiegmann et al.,
2005). In recent years, researchers have recognized the impor-
tance of investigating cognitive mechanisms underlying mind
wandering, resulting in a surge of studies probing the phenome-
non from different perspectives, most notably within the fields of
neuroimaging and cognitive psychology (Schooler et al., 2011;
Christoff, 2012; Callard et al., 2013). As a result, several more or
less independent strands of research have localized correlates of
mind wandering in activity in specific brain regions (Mason et al.,
2007; Christoff et al., 2009), periodic activity fluctuations

(O’Connell et al., 2009), and behaviors (Cheyne et al., 2009; Bas-
tian and Sackur, 2013).

Activity in the default-mode network (DMN; Raichle et al.,
2001), a network of nodes comprising most notably the posterior
cingulate cortex (PCC), and the medial prefrontal cortex
(mPFC), has been related to self-reported mind wandering
(Christoff et al., 2009), behavioral errors (Eichele et al., 2008),
and attentional lapses (Weissman et al., 2006). A different set of
brain regions comprising predominantly lateral prefrontal and
parietal areas are commonly activated during demanding tasks
(Fox et al., 2005). Activity in this anti-correlated network (ACN)
is negatively correlated with activity in the DMN. It has been
shown that internetwork (i.e., between DMN and ACN) dynamic
functional connectivity (i.e., time-dependent correlations be-
tween brain areas; Hutchison et al., 2013b) is related to vigilant
attention (Thompson et al., 2013), arguably a theoretical con-
struct inversely related to mind wandering. In addition, stronger
functional connectivity between DMN and ACN has been nega-
tively correlated across subjects with each subjects variability in
reaction time (RT; Kelly et al., 2008). In another relevant strand
of research, norepinephrine released by the locus ceruleus (LC) in
the brainstem has shown to be a key mechanism in sustained
attention detailed in the influential adaptive gain theory (Aston-
Jones and Cohen, 2005; Nieuwenhuis et al., 2010).

Despite these insights into the neural basis of mind wander-
ing, its impact on cognitive control processes is still an open
question (Smallwood and Schooler, 2006; Kane et al., 2007; Wat-
kins, 2008; McVay and Kane, 2009, 2010). In this study, we com-
bine measures of neural activity to predict episodes of mind
wandering on a single-trial level. Taking a model-based neuro-
science approach (Forstmann et al., 2011) by using predictions
derived from the neural data with computational models of cog-
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nition (Fig. 1), we can identify and measure a goal-monitoring
and a response-inhibition component of executive control and
evaluate the impact of mind wandering on these component
processes.

Materials and Methods
Overview. An overview over the experiment and data-analysis procedure
is given in Figure 1. We recorded fMRI data and pupil dilation from
subjects performing the stop-signal task. After preprocessing these data,
we extracted features that were indicated by previous research to be
affected by mind wandering. These features included prestimulus activity
and functional connectivity in and between two large-scale brain net-
works, the DMN and ACN. We also extracted prestimulus baseline pupil
diameter and the pupillary response elicited by each stimulus. Mind
wandering was operationalized using introspective thought-probes
(Smallwood and Schooler, 2006) and we trained a support-vector ma-
chine (Schölkopf and Smola, 2002) to classify each individual trial into
either on-or off-task based on subjects’ responses to these probes. As a
result of this classification, each trial was assigned a probability reflecting
the likelihood that the individual was on- or off-task. This classification
was instrumental in enabling us to analyze both neural and cognitive
processes underlying on- and off-task cognition because we could ana-
lyze the data from every single trial rather than being restricted to those
trials that were accompanied by a thought-probe. Based on the single-
trial labels derived from the classifier, we analyzed the neural and behav-
ioral differences between on- and off-task states using a cognitive process
model that is often used for analyzing data from a stop-signal task. The
stop-signal task is frequently used to operationalize response-inhibition
(Logan and Cowan, 1984; Aron and Poldrack, 2006; Chikazoe et al.,
2009; Forstmann et al., 2012; Jahfari et al., 2012) and requires the partic-
ipant to occasionally withhold responses in a choice task (the go task)
when presented with a stop signal. We use a cognitive model of the
stop-signal task with racing stop and go processes (Logan et al., 2014) to
quantify two executive functions. The first is a goal-monitoring process
that balances between making fast go responses and the necessity to stop
some responses, which is reflected in model parameters describing the go
process. This process comprises both an attentional component, cap-
tured by rate parameters in the cognitive model, and a strategic compo-
nent reflected in changes in the response threshold parameter. The
second, response inhibition, is the fast inhibitory process necessary to
interrupt a response, which is described by stopping-related parameters.
Thus, the stop-signal task enables us to distil from behavior model pa-
rameters that index both goal-monitoring and response-inhibition pro-
cesses that are hallmarks of executive control (Verbruggen and Logan,
2008).

Subjects. The study was approved by the ethics committee of the Psy-
chology Department of the University of Amsterdam. A group of 20
neurologically healthy subjects were recruited (8 male; age range, 22–35
years; mean age, 24.0 years). The data from a subgroup of 16 subjects was
acquired in the control condition in the larger setup of a sleep-
deprivation study implying that subjects sleep and nicotine/caffeine con-
sumption was controlled before testing. The additional four subjects
were acquired to increase confidence in the results and subjects were
required to abstain from coffee and nicotine 24 h before testing. Because
of a technical error in the eye-tracker, pupil-diameter was only acquired
for 19 of 20 subjects. This subject’s data were therefore excluded when
training the classifier but were included in all other analyses.

Behavioral paradigm. All subjects completed a standard stop-signal
paradigm (Lappin and Eriksen, 1966; Logan and Cowan, 1984): in each
trial, subjects were presented with a fixation cross (500 ms) followed by
an arrow pointing to the left or to the right presented for 400 ms. Subjects
were instructed to respond as quickly and accurately as possible with the
index finger of their left and right hand corresponding to the orientation
of the arrow. In one-third of the trials, an additional auditory stimulus
(2.2 kHz) was presented at a variable delay (stop-stimulus delay; SSD)
relative to the onset of the visual stimulus. Subjects were instructed to try
to withhold their response once the stop-signal was perceived. The SSD
was adapted according to a staircase procedure, such that the probability
of successfully inhibiting a response approached chance level (Levitt,
1971). The delay between the arrow and the stop signal was varied sepa-
rately for left and right hand responses. After each stop trial, the proba-
bility of responding given all earlier stop-trials was calculated.
Probabilities �0.5 resulted in an decrease of the SSD on the next stop-
trial, and probabilities �0.5 resulted in a increase of the SSD on the next
stop-trial in steps of 50 ms. The SSD value for stop-signal trials was
initially set at 190 ms and had a possible range from 40 to 790 ms. In total,
284 go-trials and 142 stop-trials were presented. In addition, there were
24 null trials in which only a fixation-cross was presented. The null trials
were included to counteract continuous building up of the BOLD-
response over successive trials. There were 40 thought-probes, which
consisted of a blank screen with the question “Where was your attention
in the previous trial?” and subjects responded on a five-point Likert scale
ranging from task-independent to task-centered. Subjects adjusted an
arrow pointing to one of the five responses using their left and right index
fingers. Thought probes were pseudorandomly intermixed in the trial
sequence but always presented after go trials to avoid disruption of mind-
wandering episodes by the stop-signal.

MRI image acquisition. Imaging data were acquired on a 3T Philips
Achieva scanner using a 32-channel head coil. For each subject, a T1
anatomical scan was acquired [T1 multishot turbo-field echo, 220 trans-

Figure 1. Summary of the analysis procedure. Data from both fMRI and pupil-diameter recordings are preprocessed and theoretically derived features are extracted and fed into a classification
algorithm (SVM). Self-reported mind wandering scores are used as labels and the SVM is trained to predict them. After training, all trials are classified and the neural and behavioral signature of
off-task behavior is analyzed.
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verse slices of 1 mm, with a resolution of 1 mm 3; repetition time (TR) �
8.2 ms, TE � 3.8 ms]. Functional images were acquired in transverse
orientation using a single shot EPI sequence with 37 3 mm slices with an
in-plane resolution of 3 � 3 mm (field-of-view � 122 � 240 � 240 mm,
TR � 2000 ms, TE � 27.63 ms, flip-angle � 76.1°, voxel size � 3 � 3 �
3 mm, slice gap 0.3 mm).

fMRI analysis: preprocessing. All analyses were conducted using FSL
(Jenkinson et al., 2012) and custom Python (Van Rossum and Drake,
2011) scripts combined using the NiPype framework (Gorgolewski et al.,
2011). The analyses were performed in individual functional space where
not mentioned otherwise. Raw EPI data were slice-time corrected, re-
aligned to correct for effects of motion over time, and spatially smoothed
with a 6 mm full-width half-maximum Gaussian kernel. The data were
high-pass filtered using a cutoff frequency of 1/50 Hz to correct for
baseline drifts in the signal.

Because we wanted to investigate task-unrelated rather than task-
related activity, we preprocessed the fMRI data using a standard resting-
state analysis approach. We constructed a residual general linear model
(GLM) including the following nuisance regressors: motion direction
and amplitude (6 variables), mean time courses of white matter, and CSF
voxels extracted using FMRIB’s Automated Segmentation Tool (FAST;
Zhang et al., 2001), a regressor coding for the percentage of time the eyes
of the subject were closed during acquisition of each volume and task-
regressors (stimulus onset convolved with a standard HRF). The average
global signal was not used in the nuisance model because it can result in
spurious negative correlations (Murphy et al., 2009). All subsequent
analysis where performed on the normalized residuals obtained by sub-
tracting the model obtained via ordinary least-square linear regression
from the preprocessed data.

Data-driven ROI specification. To select regions-of-interest (ROIs)
within the DMN and the ACN, we used a mask of the PCC (van Maanen
et al., 2011) as a seed-region to derive a spatial correlation map. The
PCC-mask was transformed into individual space and Pearson-
correlation coefficients were calculated between the mean time course in
the mask and all other voxels in the brain, yielding one correlation map
for each subject. After projection into MNI space, these correlation maps
were averaged after applying Fisher’s Z-transform. The resulting cross-
subject correlation map was thresholded at the 95th percentile to yield
the 5% voxels with highest correlation with the PCC seed to extract the
nodes of the DMN. Voxels within the PCC that were correlated with the
seed region were included. Similarly, the ACN was extracted by thresh-
olding the inverted map at the 95th percentile. The resulting maps were
automatically segmented into spatially separated clusters (Table 1). Four
prominent nodes of the DMN were extracted including the PCC/precu-
neus, mPFC, and the bilateral inferior parietal lobules (IPL) all of which
have previously been reported as being part of the DMN (Andrews-
Hanna et al., 2010). Seven nodes of the ACN (Fox et al., 2005) were
extracted comprising bilateral intraparietal sulci (IPS), supplemental
motor area (SMA), bilateral dorsolateral prefrontal cortex (DLPFC), and
both insula lobules (IL). The group ROIs were projected into individual

space and a 3 � 3 � 3 cube centered on the individual peak-correlation
voxel within the ROI was used to extract a mean time-series for each ROI
and individual. Note that, even though a PCC seed was used to extract a
ROI in the same region, the remaining analysis focusing on (co)activa-
tions in and between ROIs is not contingent on how the ROIs were
defined.

fMRI feature extraction. We derived measures of activity as well as
mutual connectivity from all of the extracted nodes that were subse-
quently used as features to train a classification algorithm. For each ROI,
mean activity in the TR before the onset of a stimulus in each trial was
extracted yielding four features for the DMN and seven features for the
ACN. In addition, we calculated sliding-window correlations (Hutchi-
son et al., 2013a) with a window size of 40 s (this value was chosen based
on previous work showing that correlations can be reliably estimated on
30 – 60 s of data; Shirer et al., 2012) between the mean time courses of
each node and every other node, yielding another six features for DMN7
DMN, 21 features for ACN7 CAN, and 28 features for DMN7 ACN
correlations.

Pupil diameter data acquisition/analysis. Several previous studies have
established a correlation between pupil diameter and mind wandering
(Smallwood et al., 2011, 2012; Franklin et al., 2013). The theoretical
interpretation that is usually used to explain this effect is based on pre-
viously reported correlations between pupil diameter and activity of LC
neurons (Rajkowski et al., 1993; Aston-Jones and Cohen, 2005). Note,
however that even though several studies have used pupil diameter as a
direct measure of LC activity (Gilzenrat et al., 2010; Jepma et al., 2010;
Nieuwenhuis et al., 2010; Jepma and Nieuwenhuis, 2011; de Gee et al.,
2014), there does not yet exist published empirical evidence for this
claim. Interpreting pupil diameter as a proxy for activity of LC neurons is
attractive because it allows the application of the adaptive-gain theory:
LC neurons are the main source of norepinephrine in the brain and the
adaptive gain theory asserts that norepinephrine tunes the neural gain in
cortical cell populations that can result in participants being more or less
susceptible to competition among different cognitive goals (the explora-
tion– exploitation tradeoff; Jepma and Nieuwenhuis, 2011).

Pupil diameter (PD) was recorded using an Eyelink II system operat-
ing at a sampling rate of 1000 Hz. Points in time in which no signal was
available (blinks) were removed (along with signal transients 200 ms
before and after each blink) and linearly interpolated before analysis. As
a measure of baseline PD, the signal in the time window (�1,0) preceding
stimulus presentation was averaged. To determine the transient response
of the pupil, the PD time series was modeled using a GLM with stimulus
onset regressors (de Gee et al., 2014). The onset of each trial was con-
volved with the response function of the pupil as measured by (Hoeks
and Levelt, 1993) and used as regressors in the GLM. The � weights
corresponding to each trial were used as a measure for the pupillary
response.

Classifier. Classification was performed by a nonlinear support vector
machine (SVM; Schölkopf and Smola, 2002) with Gaussian radial basis
functions. This nonlinear, supervised classifier finds an optimal decision
boundary in feature space that allows a classification of trials into on- and
off-task trials as accurately as possible. The 11 prestimulus ROI activities,
55 between-ROI correlations, baseline PD, and pupillary response were
normalized and used for training the SVM. As target labels, we used a
dichotomized version of the subjects’ responses to the thought probes.
To account for individual variability in introspective certainty as to what
was considered on or off task, we used the per-subject minimum and
maximum score as signifying off- and on-task cognition during the pre-
ceding trial (the other probes were ignored; median number of usable
trials was 22 of 40). The tuning parameters of the SVM (soft-margin
parameter C and kernel-width parameter �) were optimized by grid-
search using the area under the receiver-operating characteristic curve
(AUC) criterion with a leave-one-out cross-validation approach across
subjects. This means that, for all possible combinations, we trained the
SVM classifier on all subjects except one and predicted the behavior for
the subject whose data were not included in the training of the classifier.
The final cross-validation score was averaged over all possible permuta-
tions. Importantly, the classifier was therefore trained and evaluated on
completely independent datasets.

Table 1. Specification of DMN and ACN regions based on a seed in the PCC

Peak coordinates

Region MNIx MNIy MNIz Nvox Correlation (r)

DMN
PCC �1 �55 26 5790 0.86*
mPFC �0 60 5 2373 0.45
lIPC �45 �68 30 1957 0.62
rIPL 48 �66 27 1082 0.55

ACN
rIPS 59 �35 41 2907 �0.17
lIPS �60 �36 40 2298 �0.16
SMA 7 �1 55 2150 �0.12
rIL 48 6 �1 2114 �0.17
lIL �48 1 �2 1822 �0.15
rDLPFC 38 42 15 488 �0.12
lDLPFC �37 38 23 276 �0.13

*The high correlation for the PCC is partly determined by its role as the seed region.
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After obtaining the optimal parameters for the SVM, we calculated
noise-perturbation scores as implemented in PyMVPA (Hanke et al.,
2009) for each feature. This score is a rough estimate of the relative
importance of each feature for the classification performance. The noise-
perturbation sensitivity measure was calculated by adding random per-
turbations individually to each feature and calculating its impact on the
cross-validated predictive score. If the classifier is on average sensitive to
perturbations to a feature, this feature is regarded as being more impor-
tant for overall classification performance. In addition, we performed
recursive feature-elimination by successively dropping the least informa-
tive feature and choosing the feature set that produced optimal classifi-
cation performance. This was done because dropping noninformative
features can significantly improve performance of the classifier. In addi-
tion, this procedure enabled us to evaluate whether all the feature groups
we extracted from the brain and pupil data were indeed yielding inde-
pendent information that could help classification. To evaluating the
information contained in the labels we performed a random permuta-
tion test by generating N � 20,000 random permutations of the assign-
ment of the labels to the trials and recalculating the performance of the
classifier. The result clearly indicated that classification performance on
the actual labels was superior to that on random labels ( p � 0.0001).
Finally, we trained the optimal SVM on the complete dataset and derived
probabilities for each single trial to be either on or off task.

Analysis of behavioral data. To studying behavioral correlates of
mind wandering, we used an independent race diffusion model (Lo-
gan et al., 2014), which describes decision-making as a race between
independent stochastic accumulators. The distribution of a single
accumulator is described by the shifted Wald-distribution parame-
terized by the time for nondecision processes (including stimulus
encoding time, response production time and in the case of the stop
accumulator the SSD) ter, drift-rate v, and boundary b (Matzke and
Wagenmakers, 2009). We modeled the stop-signal paradigm as a race
between three accumulators, one for correct decisions, one for incor-
rect decisions, and one for stopping the response with, respectively,
drift-rates V, v, and Vs (Fig. 2a). The response associated with the first
accumulator that hits boundary b is executed (correct, error, or
response-stop). In addition, each accumulator has a nondecision time
parameter ter.

The classifier described in the previous section yields, in addition to a
classification of each trial t, a probability of having correctly classified it,
i.e., whether the subject was on or off task during this trial ( pon,t and
poff,t � 1 �pon,t). Taking this uncertainty into account, we modeled the
likelihood for each trial’s data Dt as a mixture of the densities f for on- and
off-task state

f�Dt�� 	 � pon,tf�Dr��, on � task	 � poff,tf�Dt��, off � task).

This approach allows to compensate for the noise created by
misclassifications.

To extract parameter estimates at the group level, we modeled the
behavioral data across subjects in a hierarchical Bayesian framework. All
log-transformed parameters � on the subject level were modeled as being
distributed according to a normal distribution with group-level mean ��i

and standard-deviation 	�i
:

log ��i	 � Normal ���i
, 	�i

	

for � � (�1, …, �n) where n is the number of model parameters on the
subject level. We assigned mildly informative priors to the group-level
parameters, as follows:

��i
� Normal �1.5, 0.8	, 
�i � 
�� � 
ter�

�ter
� Normal �0.75, 0.5	

	�i
� Inverse Gamma �4, 10	, 
�i,

that allowed the parameter estimates to vary across a large number of
parameter values while constraining them to be in a plausible range
(Gelman and Shalizi, 2013; Gelman et al., 2013).

Eight different models implementing all possible combinations of free
parameters between on- and off-task trials were fitted and compared,
testing for the most likely parameter configuration. We used the deviance
information criterion (DIC; Spiegelhalter et al., 2002) which is a gener-
alization of Akaikes information criterion to hierarchical models for
model selection.

For the eight models, we sampled from the posterior distribution of
the parameters given the model using a blocked differential evolution
Markov-chain Monte-Carlo algorithm with migration step (turned off
after half of the burn-in period) described fully by Turner et al. (2013).
This nonstandard sampler was necessary because of the high intrinsic
correlations between the parameter values of the race model, which is
very well handled by the differential-evolution algorithm. We used 24
concurrent chains, a burn-in period of 5000 samples per chain and sam-
pled another 5000 samples resulting in 24 � 5000 � 120,000 samples per
variable. The tuning parameters of the differential evolution algorithm
was set to � � 2.38/(2n), where n was the number of parameters and b �
0.001. Posterior predictions for the best-fitting model were generated by
randomly sampling 12,000 parameter settings from the posterior distri-
butions each of which was used to sample 462 trials (one-third stop-
trials). The plots in Figure 6c show averages over parameter settings were
each estimate was calculated across the 462 trials.

Results
Neural data can reliably predict mind wandering
As shown in Figure 1, we extracted features of interest both from
the fMRI and the pupil-dilation recordings and fed them into a
SVM classifier. The choice of these features was motivated by
previous findings from the literature (Aston-Jones and Cohen,
2005; Christoff et al., 2009; Thompson et al., 2013) and can be
categorized in seven distinct groups: prestimulus activity in several
ROIs in the DMN and ACN (Table 1), respectively, prestimulus
connectivity within and between the networks (DMN7DMN,
ACN7ACN, DMN7ACN) and pupil diameter (baseline PD
and pupil response). The classifier was trained using each sub-
ject’s response to randomly interspersed thought probes pre-
sented to sample the subjects’ current state of attention (on- vs
off-task). We trained and evaluated the classifier using a between-
subject cross-validation approach, such that the classifier was
trained and tested on completely independent datasets (see Ma-
terials and Methods).

With the best parameter settings (C � 6.39, � � 0.027) and an
optimal set of 28 features, the SVM achieved across-validation
median AUC of 0.75. The cross-validation median accuracy of
this classifier was 79.7%, implying that we can expect to correctly

Figure 2. An illustration of the main parameters of the independent race diffusion model:
nondecision time ter, boundary b, correct (blue), incorrect (brown), and stop (pink) drift-rate (V,
v, Vs). The stop-signal accumulator is delayed by the SSD. The first of the three accumulators that
hits the boundary wins the race and the corresponding action is executed.
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classify four of five trials as either on or off task. Results of a
random-permutation test confirmed classification performance
(see Materials and Methods). The feature-selection procedure
showed that features from all groups (DMN/ACN activity,
DMN/ACN correlation, pupil) were necessary for optimal pre-
dictive performance. This implies that each set of features carried
unique information about responses to thought probes.

We also conducted a noise-perturbation analysis that esti-
mates the importance of each particular feature for classification
performance (Fig. 3b). In each group of features, there were a few
ROIs carrying most of the information. Activity in the PCC and
lIPL was most important in the DMN, and the most informative
ACN node was the left insula. The latter is reflected in the impor-
tance of bilateral correlations between left and right insula and
cross-network correlations between right insula and rIPL. The
mPFC’s role is mainly reflected in the importance of between
(IPS/mPFC) and within-network correlations (mPFC/IPL).
Finally, the pupillary response elicited by the stimulus appears
to be more important for classification than the baseline pupil
diameter.

The signature of the classifier replicates previous findings
To highlight which properties of the neural data were used by the
classifier, we calculated the mean score for each feature in trials
classified as on- versus off-task (Fig. 3a). The plot shows that this
direct contrast carries much of the classification-relevant infor-
mation across the various ROIs within each group, even though
additional, specific information may be contained in linear or
nonlinear interactions used by the full classifier. The direct con-
trasts have the advantage that they allows us average across the

features (Fig. 4). The resulting main effects agree with previous
work (Mason et al., 2007; Christoff et al., 2009; Stawarczyk et al.,
2011). In trials classified as on-task, DMN activity was below
baseline but it was above baseline in off-task trials (t(19) � �4.25,
p � 0.003). The opposite pattern was observed for ACN activity
(t(19) � 8.07, p � 0.0001). Absolute synchronicity within and
between networks was higher in off-task trials (DMN7 DMN:
t(19) � �4.80, p � 0.00087, ACN7 ACN: t(19) � �7.27, p �
0.0001, DMN7 ACN: t(19) � �0.8.88, p � 0.0001). In addition,
the pupillary response was reduced in off-task trials (t(19) � 9.80,
p � 0.0066) and so was baseline PD (t(19) � 3.91, p � 0.0001).
Note that p values were Bonferroni-corrected for multiple com-
parisons across all reported t tests.

Efficiency of goal monitoring is reduced in mind wandering
We used an independent race diffusion model (Logan et al.,
2014) to studying the behavioral signature of mind wandering.
The model describes decision-making as a race between indepen-
dent, stochastic accumulators (Fig. 2) striving to reach their re-
spective boundaries. As an addition to the usual setup used in
race models of the go task (e.g., the linear ballistic accumulator
model; Brown and Heathcote, 2008), the stop-signal task requires
an extra accumulator starting at the onset of the stop-signal and
representing accumulating evidence for stopping the response.
All of the parameters of this model have intuitive interpretations
with respect to the underlying cognitive processes: drift rates re-
flect the efficiency of the process, an increased threshold can be
interpreted as reflecting response caution and the nondecision
parameter estimates the time used for stimulus encoding and
response execution. To account for uncertainty in the predictions

A

B

Figure 3. Analysis of feature activations and importance for classification performance. A, Feature activation averaged over subjects and trials classified as on and off task. B, Noise-perturbation
score (measure of importance) for each feature. Features are sorted by group (network connectivity, network activity, and pupil) and perturbation score within each group.
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derived from the classifier, we extended the model to account
probabilistically for classification errors (see Materials and Meth-
ods). To make inference both on the group-and the subject-level,
we modeled the data in a hierarchical Bayesian framework
(Gelman et al., 2013; Fig. 5).

To determine which parameters, and ultimately cognitive
processes, were impacted by mind wandering, we used a Bayesian
model-selection approach. All tested models had the following
parameters: drift rate of the correct and incorrect response (V and
v), as well as drift rate for stopping (Vs); response threshold (b),
which was assumed to be the same for all accumulators, and
separate nondecision times for go and stop accumulators (ter and
ters, respectively). The models differed with respect to which of
these parameters were allowed to vary between trials classified as
on or off task. We restricted the model selection procedure to the

drift rates V and Vs, as well as the thresh-
old b because of the theoretical assump-
tions that are reflected in these
parameters, while no effect is predicted
for the nondecision times. The drift rate
for incorrect decisions v was not varied
because it had a minor impact due to the
low number of error trials and was diffi-
cult to estimate on subsets of the data.
Among the eight competing models
varying the free parameters between on-
and off-task conditions, we found that a
model allowing both drift rates (V and
Vs) and decision threshold b to vary gave
the best account of our data in terms of
the DIC (Table 2). Differences in DIC
larger than 10 can be considered strong
(Pratte and Rouder, 2012). In our anal-
ysis, the difference from the best model
to the next best was 154 DIC units,
which clearly indicates that all three pa-
rameters are adjusted during mind
wandering.

The posterior distributions of the
mean group-level parameters are dis-
played in Figure 6a,b. We can summarize

the main findings in terms of odds-ratios, i.e., how much more
likely the effect is compared with no effect. Because 73% of the
group-level distribution of the difference between V for trials
with and without mind wandering is above zero, the correct drift-
rate parameter V is 2.74 [i.e., 0.73/(1– 0.73)] times more likely to
be increased in on-task trials versus off-task trials across individ-
uals. Similarly, the boundary is 2.73 times more likely to be in-
creased for on-task relative off-task trials (73% mass above zero).
Although the stop-drift rate Vs was increased on on-task trials,
the effect was weaker, with a factor of only 1.5 times (60% of the
posterior mass �zero). We can interpret these effects as mainly
reflecting a reduction of the efficiency of monitoring the balance
between go and stop task. The reduced drift rate is indicative of
reduced attention during mind wandering, whereas the lowered
boundary points to a strategic adaptation to compensate this
effect. The result of combined reduction drift rate and response
threshold was that go errors were more frequent and go respond-
ing was more variable (mainly reflected in the tails of the distri-
bution, i.e., an overrepresentation of short and long RTs) during
mind wandering, whereas efficiency of the stop-process was not
significantly impaired (Fig. 6c).

Discussion
In a multimodal classification study, we showed that episodes
of mind wandering can be classified with high accuracy on the
single-trial level using prestimulus (co)activations of brain
structures belonging to the DMN and ACN. An inclusion of
pupillary measures further improves predictive performance.
Our results indicate that network activity and transient net-
work correlations, as well as baseline PD and the pupillary
response, provide unique sources of information regarding
the current attentional state of the subject. Furthermore, a
model-based analysis of behavior associated with on- and off-
task state as identified by the classifier show that both the rate
of evidence accumulation of the go process and the response
threshold are reduced during mind wandering. Because the
efficiency of the inhibitory process necessary for stopping the

Figure 4. Comparison of feature activations between trials classified as on or off task. Error bars are confidence intervals (Morey,
2008), asterisks indicate significance at the p � 0.01 level after adjusting for multiple comparisons.

Figure 5. The best-fitting hierarchical Bayesian model: individual parameters V, Vs, and b
(indexed by subject i) are free to vary between on- and off-task. Individual data Di is modeled
according to the independent race diffusion model illustrated in Figure 2 and each of the log-
transformed, subject-level parameters is normally distributed at the group-level with parame-
ters �p, 	p for each parameter p (see Materials and Methods).
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response was not impaired, a nonspecific effect was not sup-
ported. Rather, our results indicate a specific effect on execu-
tive processes controlling goal monitoring, which become less
efficient during mind wandering in the stop-signal task. The
dissociation between effects on go and stop processes rates is
consistent with Logan et al.’s (2014) finding that these pro-
cesses do not share attentional capacity as operationalized by
drift-rate parameters.

By modeling the behavioral data from the stop-signal task,
we were able to disentangle the impact of mind wandering on
different executive control processes involved in processing
the stop-signal task, namely goal monitoring and response
inhibition. The first is mainly reflected
in adjusting the cognition of the go task
and managing the tradeoff between fast
going and stopping, the latter is specific
to processing the stop signal. Our
model-based analysis of the cognitive
processes underlying mind wandering
in this task shows a subtle but specific
pattern of results. Response inhibition is
largely unimpaired, with inefficiencies
in the go process reflected in lowered
drift rates and response thresholds dur-
ing mind wandering. The combination
of lower drift rates for the correct re-
sponse accumulator and lower thresh-
olds is reflected in more impulsive
behavior; in the sense that more errors
and more behavioral variability are ob-
served. This finding is in correspon-
dence with previous work which found
increased variability during mind wan-
dering (Stawarczyk et al., 2011; Bastian
and Sackur, 2013). However, our results
give a further indication of which un-
derlying processes are responsible for
these findings.

The posterior distributions esti-
mated in our Bayesian analysis were rel-
atively broad implying that there is
strong interindividual variation of cognitive and behavioral
consequences of mind wandering. This is unsurprising when
considering the unspecific nature of the thought-probes as
used in this study, which measure a potentially complex phe-
nomenon on a single scale. It is reasonable to assume that our
subjects engaged in different cognitive processes during the
episodes they classified as “off-task.” For example, while some
might have been planning their evening activities, more mo-
tivated subjects could have used the time to think about how
to improve their performance on the current task. Although
both kinds of mentation may engage associative brain regions,
their impact on behavior is potentially different. To shed more
light on this interindividual variability, it might be beneficial
to use more specific introspective measures (Stawarczyk et al.,
2011) allowing a refined analysis.

In addition to investigating the processes involved in mind
wandering on a psychological level, our method also shed light
on the neural origins of these processes. Dissecting the trained
classifier, we found that activations in the DMN were consis-
tently higher and activations in ACN regions consistently
lower in trials that were classified as off task. This finding is in
correspondence with earlier work using different paradigms

(Weissman et al., 2006; Christoff et al., 2009; Stawarczyk et al.,
2011), and has been interpreted in terms of an emergence of
internal mentation during mind wandering (Andrews-Hanna,
2012). Extending these results, our study considered also
functional connectivity in mind wandering (Kucyi and Davis,
2014). We found that the functional connections within and
between the investigated networks were stronger during mind
wandering. Even though this might at first sight be counterin-
tuitive (assuming that higher interconnectivity means higher
efficiency of information processing), it is consistent with re-
cent theoretical and empirical work (Eldar et al., 2013). Based
on simulations of artificial neural networks, as well as empir-
ical data from whole-brain connectivity analyses, these au-
thors showed that an increase in neural-gain as caused by the
release of norepinephrine heightens clustering and functional
connectivity of brain networks. Because high norepinephrine
levels are associated with an exploratory state (Aston-Jones
and Cohen, 2005) in which competing internal goals have a
higher chance of becoming active (i.e., mind wandering can be
initiated), higher functional connectivity should be observed
during periods of mind wandering. A prediction from this
viewpoint is that these modulations should be observable

A

B

C

Figure 6. Posterior distribution of the group-level means and posterior predictions. A, Posterior distributions of group-level
mean parameter for V, Vs, and b overlaid for on- versus off-task. B, The distribution of differences between on- versus off-task and
(C) posterior predictions for RT, error-rate and probability of stopping (left to right). Blue signifies on-task and red codes for off-task
parameters.

Table 2. Model selection criteria for the eight tested models

Free parameters*

Model V Vs b DIC

1 � � � �8917
2 � � � �9751
3 � � � �9733
4 � � � �9698
5 � � � �9788
6 � � � �9763
7 � � � �9867
8 � � � �10021

*Parameters that were free to vary between on- and off-task trials are marked by an �; fixed parameters are
marked by a �.
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across all cortical areas because of the widespread connectivity
of the norepinephrine system (Eldar et al., 2013). Our results
are in line with this interpretation since within-network cor-
relations were more positive and between-network correla-
tions were more negative during mind wandering. Note that, even
though the main effects were in the same direction for all functional
couplings and may therefore seem to be redundant, unique infor-
mation about mind wandering was carried by within-DMN, within-
ACN, and between-network correlations. The specific dynamic
functional connectivity between individual brain regions does
therefore seem to be modulated by more than neural gain.

The theoretical framework by Eldar et al. (2013) coupling
functional connectivity and norepinephrine is also in line with
our finding that the transient pupillary response evoked by the
presentation of the stimulus was reduced during mind wan-
dering, if one accepts the putative link between norepinephric
neuromodulation and pupil diameter. The pupillary response,
when interpreted as a measure of the phasic LC-bursts
initiated by target-processing (Aston-Jones et al., 1994), is
strongest during periods of optimal task-performance (Aston-
Jones and Cohen, 2005). The relationship between these
phasic bursts and tonic levels of LC activity is of the Yerkes-
Dodson type: both low and high tonic activity suppresses the
transient LC response, which is strongest at intermediate tonic
LC levels. Therefore, the increase in functional connectivity
and the reduction of the pupillary response are well explained
by this theory. However, interpreting the baseline PD as re-
flecting tonic LC levels, we are faced with the puzzling finding
that baseline PD was lower in off- rather than on-task trials in
our experiment. From the adaptive-gain theory, we would
have expected that baseline PD would be increased rather than
reduced. Even though usually a negative correlation between
baseline PD and pupillary response is observed, there are ex-
ceptions to this rule (de Gee et al., 2014, SI). Further research
targeting this specific effect is necessary to investigate this
seemingly contradictory pattern of results.

The vast majority of previous studies investigating mind
wandering have used a go/no-go task, the sustained attention
to response task (SART). Because of its highly repetitive and
undemanding nature, this task has proven well suited to pro-
voking episodes of mind wandering. In addition, there is good
evidence that particular behavioral patterns can be observed in
this task when a person is not concentrating: increased error
rates, anticipatory responses, response omissions (Cheyne et
al., 2009), RT variability, and an overrepresentation of long
RTs (Bastian and Sackur, 2013). Despite the obvious benefits
of using such a simple task, more complex tasks are required to
investigate how mind wandering impacts higher cognitive
processes. Converging results from many studies indicate that
mind wandering occupies a substantial amount of time when-
ever humans engage in cognitive processing both in the labo-
ratory (Smallwood and Schooler, 2006) and the real world
(Killingsworth and Gilbert, 2010). Indeed it has been stated
that “[…] every laboratory study is at least partially a study of
mind wandering” (Smallwood and Schooler, 2006). The main
reason why research so far has been mainly restricted to the
SART (Reichle et al., 2010; Uzzaman and Joordens, 2011; with
the exception of studies investigating mind wandering during
reading, Schad et al., 2012) is that it is problematic to detect
periods of mind wandering without that detection affecting
behavior. Because most research relies on introspective
thought-probes, a large number of those needs be interspersed

throughout the experiment to increase statistical power. The
single-trial based approach we presented in the current study
of the stop-signal task overcomes this problem and is extensi-
ble to other experimental paradigms. By relating neural mea-
sures to occasionally interspersed thought-probes using
classification algorithms, all trials in the experiment can be
assigned a probability of belonging to an episode of mind
wandering. In combination with suitable analysis methods,
this offers a powerful new approach for future studies in this
research field.
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